Measuring Soil Health with practical examples

Willie Pretorius, Patrick Freeze & Zach Wright

Sources of Energy

 Nearly all living things obtain energy either directly or indirectly from the energy of <u>sunlight</u> captured during photosynthesis.

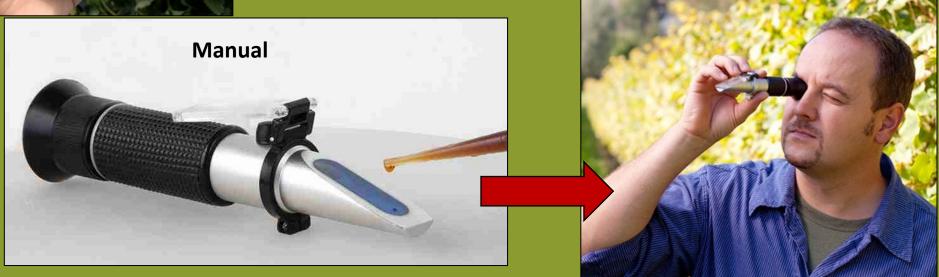
The sun is the source of energy for most living things.

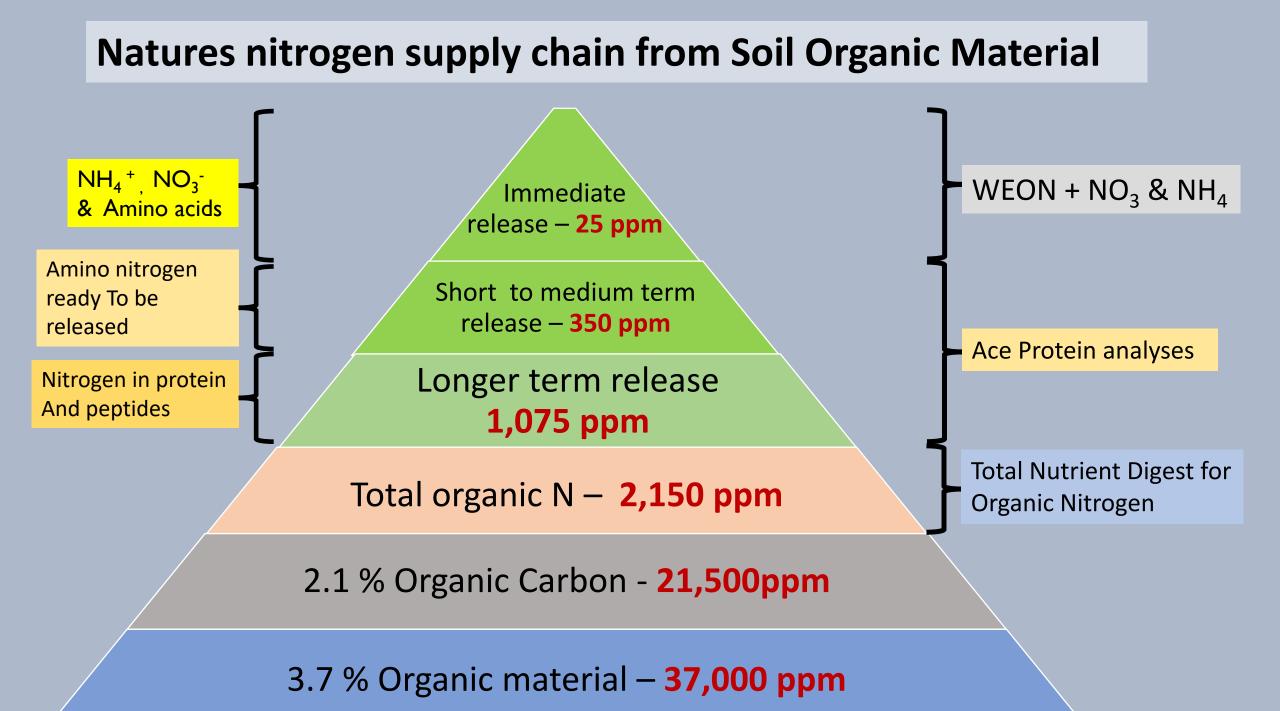
The zebra obtains energy by eating grass.

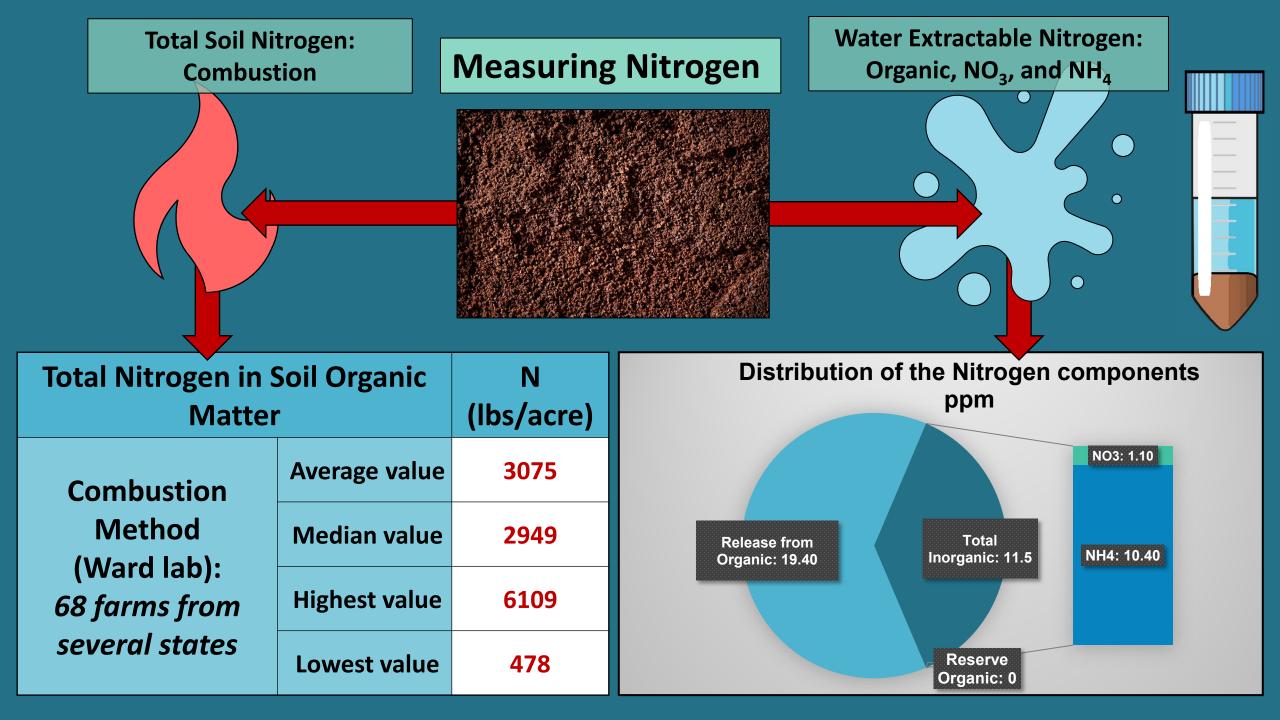
Plants such as grass use energy from the sun to make their own food. The lion obtains energy by feeding on the zebra.

Required Nutrient	How nature provides it						
Carbon		Photosynthesis (CO ₂ + Sunlight)					
Nitrogen		Atmospheric N ₂ + N-fixing bacteria					
Mineral nutrients (macro, micro, and nano)		Microbial-facilitated release or from natural weathering					
Water		Rain, water infiltration, and storage capacity					

Photosynthesis capacity and rate measurements




• the amount of light intercepted by green leaves


- rate of conversion of light energy to sugars
- measured with a **refractometer**

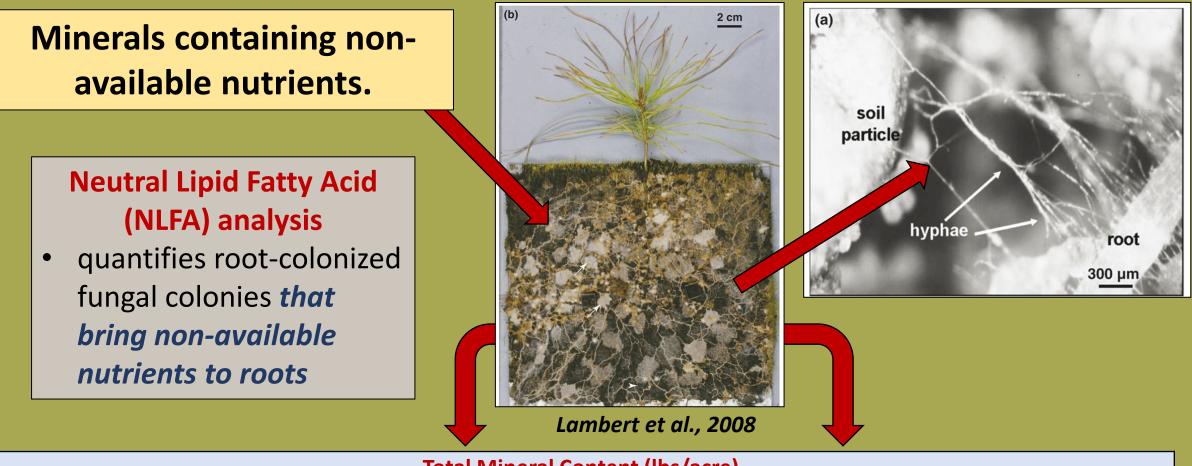
The presence of mycorrhizal fungi can significantly increase photosynthetic rate

- Results in higher plant sugar and mineral content
- less prone to pests and diseases

Forage & Plant Analysis: Nitrogen and nutrient content from cover crop

Calculating nitrogen and nutrient availability from soil analyses

Plant Biomass Total Nitrogen and Dry Matter Total N Dry Matter Crop (lb/acre/year) (lb/acre) 3,000 - 9,000 30 - 120Mustards 4,000 - 7,000 Radish 50 - 200 2,000 - 5,000 Rapeseed 40 - 160 6,000 - 10,000 75 – 220 Berseem clover 2,500 - 4,500 100 - 150 *Cowpeas* 3,500 - 5,500 Crimson clover 70 - 130 Field peas 4,000 - 5,000 90 - 150 2,300 - 5,000 Hairy vetch 90 - 200 Medics 50 - 120 1,500 - 4,000 2,000 - 5,000 Red clover 70 – 150 Subterranean clovers 3,000 - 8,500 75 – 200 3,000 - 5,000 **Sweetclovers** 90 - 170 White clover 80 - 200 2,000 - 6,000 Woollypod vetch 100 - 250 4,000 - 8,000


From Managing Cover Crops Profitably, 3rd Edition. SARE Outreach 2007 Forage & Plant Analysis: Nitrogen and nutrient content from cover crop

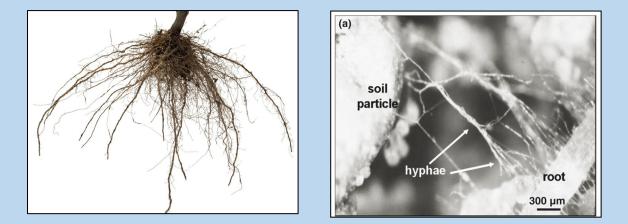
Calculating nitrogen and nutrient availability from soil analyses

From UNL-Extension

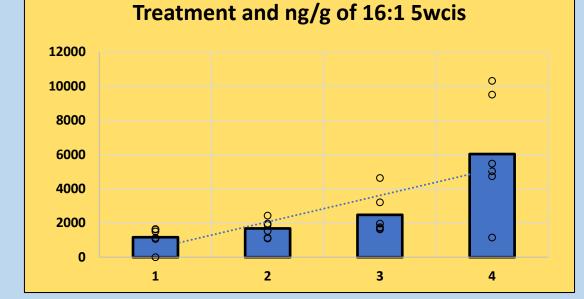
- Gather plant cover in known quadrant area (25 x 25 cm, 50 x 50cm or 1 x 1 m)
- Place in PAPER back and ship to lab for analysis
- If microbial biomass (PLFA) or activity (CO2) is in optimal range, assume 50% available N in the full first year (roughly apprx)

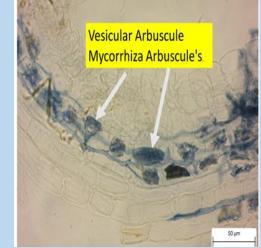
Total Mineral Content (Ibs/acre)												
Total Nutrient	Element	Р	К	Са	Mg	S	Zn	Fe	Mn	Cu	В	Мо
Digest (Ward Lab)	Average Value	878	3735	8617	4418	431	90	22060	974	21	26	1
from 68 farms	Median Value	825	3599	5333	4443	375	85	22037	665	21	9	1
across several	Highest	2404	9354	70676	9956	1703	235	39559	5268	46	137	3.5
states	Lowest	281	666	1076	647	51	10	1889	47	2	2	1

Also, these plus 40 other micro and nano-nutrients


Are mycorrhizae fungi present and are they colonizing the root?

PLFA provides quantified evidence of mycorrhizae in **BULK soil**




NLFA targets **ROOTS** and provides quantified evidence of mycorrhizae colonization

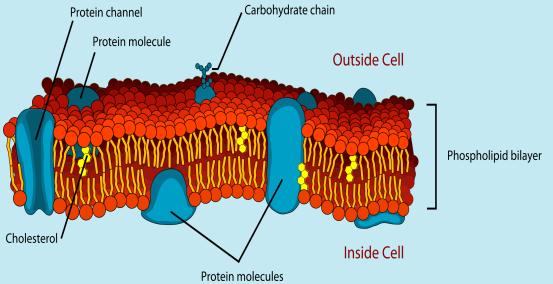
Root Colonization: Mycorrhizae evaluation

Correlation between NLFA and % colonization

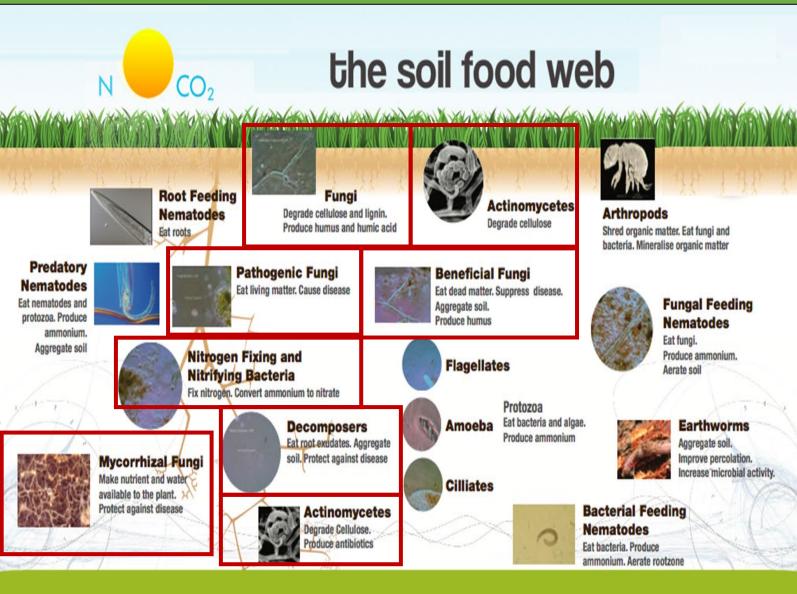
Mycorrhizae arbuscles in roots

Measuring Microbes in Bulk Soil – type, amount, and relationships

Broad, Qualitative Approach: 24-hour CO₂ Soil Respiration Method

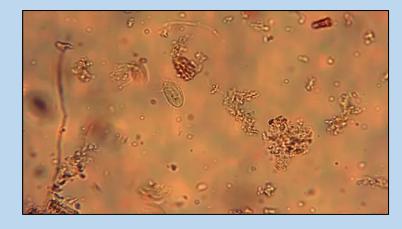

Measuring the CO₂ release over a 24-hour period: Relates microbial respiration to the total activity

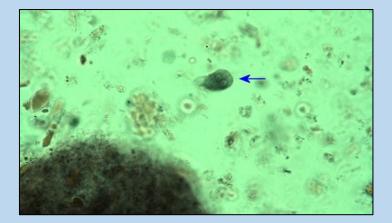
Targeted Approach: PLFA (Phospholipid Fatty Acid) analyses


Quantifies microbes from the most important functional groupings of the Soil Food Web:

- Bacteria (gram+/-)
- Fungi (Saprophytes & Mycorrhizae)
- Actinomycetes Rhizobia bacteria
- Protozoa
- Total Microbial Biomass

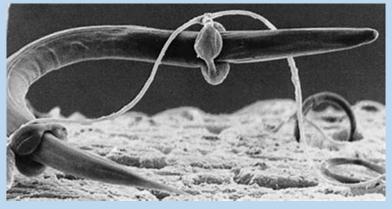
Phospholipid fatty acid analyses (PLFA)


Sample ID	BC 27		
· · · · · · · · · · · · · · · · · · ·	202/		
Total Microbial Biomass ng/g	5037.93		
Diversity Index	1.446		
Bacteria %	47.7		
Total Bacteria Biomass	2403.09		
Actinomycetes %	5.94		
Actinomycetes Biomass	299.23		
Gram (-) %	22.23		
Gram (-) Biomass	1120.09		
Rhizobia %	0		
Rhizobia Biomass	0		
Total Fungi %	12.8		
Total Fungi Biomass	644.72		
Arbuscular Mycorrhizal %	5.03		
Arbuscular Mycorrhizal Biomass	253.27		
Saprophytic %	7.77		
Saprophytes Biomass	391.45		
Protozoan %	0.17		
Protozoa Biomass	8.5		
Gram (+) Biomass	1283		
Gram (+) %	25.47		

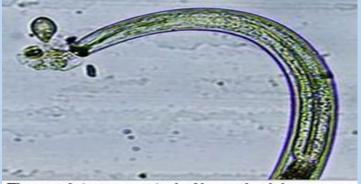

Real view of some of the "critters" in the soil microbiome not yet identified with the PLFA.

Protozoa species

Ciliates



Flagellates



Bacterial feeders

Nematodes

Fungal feeders

The predatory nematode Neoactinolaimus feeding on a rotifer.

Predators

Water infiltration and holding capacity

Soil aggregate stability is probably the most important soil condition for the maintenance of soil health.

The effects of different soil management on similar soils: *fewer aggregates in the tilled soil*

There is a strong correlation between the aggregate stability and the water infiltration and water holding capacity.

Soil Health test packages overview from Ward Laboratories.

	Microbial functional group evaluation, total microbial biomass, bacteria, fungi (mycorrhizae & saprophytes), protozoa and important microbial ratios								Plus PLFA
VHAT DO HE TESTS MEASURE	Tota	al Nutrient miner	Total Nutrient Digest	Plus TND					
	Root exudate simula	ated nutrient ext	ract, NO3, NH4, inoi	Inorganic nutrients extracted with H3A	Inorganic nutrients extracted with H3A	Plus Inorganic nutrients extracted with H3A			
	Microbial food source retained, Han		ratio, Organic Nitrog umber and Nitrogen		H20 extracted Organic C&N, NH4 &NO3	H20 extracted Organic C&N, NH4 &NO3	H20 extracted Organic C&N, NH4 &NO3	H20 extracted Organic C&N, NH4 &NO3	Plus H20 extra Organic C&N, NH4 &NO3
	Soil organic mat	ter and soil organ	iic carbon	Soil organic Matter and Soil organic C	Soil organic Matter and Soil organic C	Soil organic Matter and Soil organic C	Soil organic Matter and Soil organic C	Soil organic Matter and Soil organic C	Plus Soil organic Matter and Soil organic C
	Ability to resist erosion		Volumetric Aggregate Stability	Volumetric Aggregate Stability	Volumetric Aggregate Stability	Volumetric Aggregate Stability	Volumetric Aggregate Stability	Volumetric Aggregate Stability	Plus Volumetric Aggregate Stability
	Indication and extent of soil life	24 Hour CO2-C Respiration test	24 Hour CO2-C Respiration test	24 Hour CO2-C Respiration test	24 Hour CO2-C Respiration test	24 Hour CO2-C Respiration test	24 Hour CO2-C Respiration test	24 Hour CO2-C Respiration test	24 Hour CO2-C Respiration test
OFFERED TEST and EVALUATION		Entry level soil health test	Basic Soil Health test	Standard soil health test	Progessive soil health test	Complete Haney/Ward SH test	Advanced soil health evaluation	Comprehensive soil health evaluation	
	PRICE								

W

TH

Μ

Newly incorporated soil Health tests

Test name		W/by are these tests important and what do they contribute to the Cail Health evaluation					
Test name	What it measures	Why are these tests important and what do they contribute to the Soil Health evaluation.					
	(β-glucosidase (BG)	Provides an indication of cellulose decomposition; ie an indication of soil organic decomposition. Useful for evaluation of SOM degradation rate and thus nutrient cycling ability.					
	N-Acetyl-β-glucosaminidase	Enzymes that catalyze the hydrolysis of chitin which facilitates carbon (C) and nitrogen (N) cycling					
	(NAG)	in soils participating in the processes whereby chitin is converted to amino sugars, N in soils.					
	Arylsulfatase (ARS)	Soil arylsulfatase (ARS) is an important enzyme that controls the acquisition of organic sulfur and thus the soil sulfur cycling.					
Soil Enzymes	Alkaline Phosphatase (AlkP)	Alkaline phosphatase (ALP), hydrolyzes organic phosphorus (P) into dissolved phosphorus in soils and is therefore vital for provision of soluble phosphorus for plant roots.					
	Acid Phosphatase (AcP)	Acid phosphatase (ACP) enzymes are involved in the mobilization of soil phosphorus (P) and polyphosphate accumulated in the fungal tissues of ectomycorrhizal roots, thereby influencing the amounts of P that are stored in the fungus and transferred to the host plan					
	Phosphodiesterase (PHD)	This enzyme is the alkaline enzyme version of AcP which is active in predominantly acidic soils, PHD has a pH optimum of 10 and therefore active in alkaline soils for P release.					
POX - C	Permanganate oxidizable carbon (POXC) is a simple method for estimating Labile Organic Carbon	*This test in association with TOC% could serve as a more accurate methodology to calculate stable or sequestered carbon. *TOC% - POXC(extracted at an acceptable Molality that will measure most or all of the labile carbon components that is microbially decomposible) = Stable carbon. *Could be included as a component of the Advanced Soil Health Evaluation.					
Ace Protein	Autoclaved Citrate Extractable (ACE) Protein Index an indicator of the amount of protein-like substances that are present in the soil organic matter	The pool of proteins extracted is a soil health indicator reflecting the primary pool of organic N in soil and thus as potentially available organic N through mineralization.					
NLFA (Neutral lipid fatty acids) are mainly used to measure the abundance of Arbuscular Mycorrhizal Fungi (AMF). In development	Mycorrhizae root colonization measurement.	This is one of the most important components of Soil Health that confirms connectivity between crop plant and soil minerals and has to become a component of the Comprehensive Soil Health evaluation.					