Raymond C. Ward Ward Laboratories, Inc Kearney, NE www.wardlab.com

Chloride and Other Soil Secrets

Raymond Ward Ward Laboratories, Inc Kearney, NE www.wardlab.com

CHLORIDE RESEACH HISTORY

- Scientists first reported crop responses to Chloride in the mid 1800's
- Chloride has been recognized as an essential plant nutrient since 1954
- Research has been ongoing for the past 20 years by leading universities such as Kansas State, Texas A & M, Montana State, Rutgers, and South Dakota State

CHLORIDE VS CHLORINE

- Chlorine (Cl₂) is commonly used in solvents, pesticides, and plastics.
- Chlorine (Cl₂) in never found free in nature. It is found as the chloride ion (Cl-).
- Chloride (CI-) is the only form of chlorine found in nature.
- Chloride (CI-) is soluble in the soil.

THE ROLES OF CHLORIDE

- Photosynthesis and enzyme activation
- Transport of other nutrients
- Water movement within the cell
- Stomata activity
- Accelerated plant development
- Reduced plant lodging

CHLORIDE IS MOBILE... LIKE NITRATE

Application of chloride close to time of need is probably more effective, particularly on coarse textured soils

Chloride Soil Testing in Kansas

- A chloride soil test has been offered by KSU and SDSU Soil Testing Labs since the mid 1990's
- Recommended soil depth is 0-24 inches
- Calcium nitrate solution is used to extract chloride from the soil
- Fertilizer recommendations are usually made for corn, sorghum and wheat

CHLORIDE EFFECTS ON WHEAT YIELD Kansas--2006

Topdressed Cl	Yield
lb/A	bu/A
0	38
10	43
20	45
30	44
<u>40</u>	45
Ammonium chloride Soil Cl: 12 lb/A 2 ft	Variety: 2145 Gordon, KSU

Chloride Fertilization of Wheat Average of 8 Varieties

	Yield Increase with
County	20 lbs of Cl/A
Saline	9.8 Bu/A

Stafford

6.9 Bu/A

Soil test CI was low at both locations. Lamond, KSU

CHARACTERISTICS OF CHLORIDE SOURCES

AMMONIUM CHLORIDE (NH4Cl)---high Cl concentration, available in fluid form, mixes well with N,P,S, micronutrients

POTASSIUM CHLORIDE (KCI)...not used much on high K soils, makes low analysis fluid, limited concentrations in UAN mixes

MAGNESIUM CHLORIDE (MgCl₂)....available in fluid form BUT CANNOT USE WITH PHOSPHATE FERTILIZER

Topdressed Chloride Can Reduce Leaf Rust, Increase Wheat Yields

	Cl rate,	Cl rate, Leaf rus		Grain yield,
Treatment	lb/A	4/13	5/1	bu/A
NH₄Cl	40	30	26.3	41.7
KCI	40	60	27.5	42.0
MgCl ₂	40	65	28.8	40.9
Check	0	70	67.5	35.4

F-2 leaf on 4/13, Flag leaf on 5/1

Hill County, TX

NO CHLORIDE

20 LB/A CHLORIDE

MONTANA STATE

Wheat Diseases Suppressed by CI Fertilizers

Take-all root rot Common root rot Leaf rust Septoria Tanspot Stripe rust

Plant Analysis: A Useful Diagnostic Tool for Cl

Category	Concentration	Frequency of response, %
Low	<u>≤</u> 0.12	78
Transition	0.13-0.40	49
Adequate	>0.40	6

Wheat and barley; whole shoots; boot to flowering stage; based on central and northern Great Plains data.

EFFECTS OF CHLORIDE FERTILIZATION ON NO-TILL CONTINUOUS WINTER WHEAT

N	Yield	K	C
lb/A	bu/A		%
0	29.9	1.40	0.057
4	32.5	1.59	0.138
7	37.5	1.56	0.166
	3.9	0.15	0.031
ft, 19 lb/	A. Variety: Ja	agger Cla	aassen, KSU
	0 4 7	0 29.9 4 32.5 7 37.5 3.9	0 29.9 1.40 4 32.5 1.59 7 37.5 1.56 3.9 0.15

ADEQUATE CHLORIDE LEVELS ALLOW SMALL GRAIN CROPS TO ADVANCE PLANT MATURITY AS MUCH AS 5 TO 7 DAYS

KSU Wheat Summary: 1990 to date

- 39 field studies were conducted from 1990 through 2006 examining yield response in wheat to chloride fertilizers.
- All were conducted in the eastern half of the state, under dryland conditions, in areas with high soil K levels and no history of potash use.
- Most included both rates and sources of chloride.
- A statistically significant response to applied chloride was seen in 23 of the 39 studies.

KSU -- N.C. Kansas, Belleville

Chloride Effects on Grain Sorghum

Rate	Yield
<u>lb/a Cl</u>	<u>bu/acre</u>
0	92.2
20	101.3
40	102.8
Planting Date: June 4, 2004	Variety: DKS 44-20
Harvest: Oct 20, 2004	Soil Test Cl (0-24") = 19 lb/a
Ammonium Chloride b	roadcast immediately after planting

Response of dryland grain sorghum to applied chloride fertilizer in Kansas 1996-2006

Chloride applied Ib Cl-/acre	Grain Yield Bu/A	% Chloride in leaf at boot, percent
0	98.5 b	0.10 c
20	108.2 a	0.24 b
40	109.9 a	0.33 c
LSD 0.05	2.4	0.05
n	20	11
		No till

Sorghum: 1996 to date

- Unlike wheat, no visual chloride deficiency symptoms have been described on sorghum.
- There appears to be a relationship in sorghum between chloride nutrition and stalk quality.
- The first chloride studies on sorghum found, were conducted by Lamond in 1996.
- 23 chloride response trials on dryland sorghum have been reported, by several people, primarily in central Kansas.

Sorghum Summary

- 19 of the 23 trials reported found a significant response to the application of chloride.
- A combined analysis was conducted using the same process as with wheat.
- A significant response to 20 lbs of chloride, the lowest rate used, was found.

DRYLAND CORN RESPONSES TO CHLORIDE South Dakota -- 2006

Treatment	Yield
<u>Cl lb/A</u>	<u>bu/A</u>
0	76
10	81
20	<mark>84</mark>
<u>30</u>	<u>82</u>
Ammonium chloride, 2 x 2 Soil test Cl: 20 lb/A 2 ft (low	SDSU /)

Response of Dryland Corn to Chloride Fertilization (KS)

CI rate	1995	19	996	19	97	
Ib/A R		R	R B		R B	
		Yield	difference	e due to (CI, bu/A	
20	19	2	12.5	2.5	0	7.2
40	15.5	9.5	13.5	7	-2.5	8.6
Average	17.3	5.8	13	4.8	-1.3	7.9
	Co., R= Ri across sour		nd NH₄Cl)			
				No	o∙till	
				-	On	The Plains

Response of dryland corn to applied chloride fertilizer in Kansas, 1990-2001.

Chloride applied Ib Cl-/acre	Grain Yield Bu/A	Percent Chloride in ear leaf at tassel
0	104.4 b	0.17 c
20	108.9 a	0.27 b
40	111.6 a	0.36 c
LSD 0.05	3.4	0.05
n	11	11

Corn Summary

- As with wheat and sorghum, only studies using broadcast applications of KCl or NH₄Cl were included.
- Only 6 of the 11 trials found a significant response to the application of chloride.
- A combined analysis was conducted using the same process as with wheat.
- A significant response to 20 lbs of chloride, the lowest rate used, was found.

SUNFLOWER RESPONSES TO CHLORIDE South Dakota

Treatment	Yield
<u>Cl lb/A</u>	lb/A
0	1569
10	1781
20	2037
30	2183
<u>50</u>	<u> 1966</u>
Ammonium chloride, 2 x 2	SDSU
Soil test Cl: 20 lb/A 2 ft (low	/)

Soil test chloride interpretations and fertilizer recommendations for Kansas.

Soil Chloride in a 0-24" sample			Cl Recommended*
Category	lb/acre	ppm	lb/acre
Low	<30	<4	20
Medium	30-45	4-6	10
High	> 45	>6	0

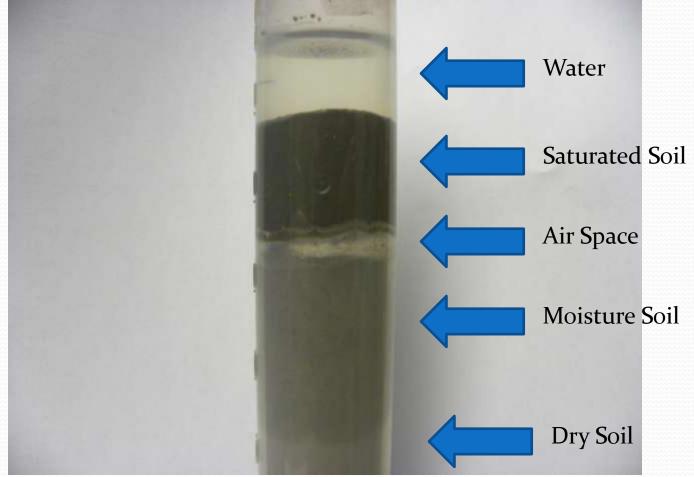
*Recommendations for corn, sorghum and wheat only.

WHAT'S THE CORRECT RATE OF CHLORIDE NEEDED?

- SOIL TEST AT A DEPTH UP TO 24 INCHES
- YIELD RESPONSE HAS BEEN RECORDED AT 6 PPM OR LESS; OR LESS THAN 45 LBS OF CI/A
- IN NEARLY ALL KANSAS STATE UNIVERSITY CHLORIDE PLOTS, A RATE OF 20 POUNDS OF ACTUAL CHLORIDE PER ACRE MAXIUMIZED YIELDS VERSES DOLLARS SPENT

SOURCES OF CHLORIDE

Ammonia chloride (NH4Cl) Potassium chloride (KCl) Magnesium chloride (MgCl₂) Calcium chloride (CaCl₂)



CHARACTERISTICS OF CHLORIDE SOURCES

- AMMONIUM CHLORIDE....high Cl concentration, available as a fluid form, mixes well with N,P,S, micronutrients
 POTASSIUM CHLORIDE...not used much on high K soils, makes low analysis fluid, limited concentrations in UAN mixes
- MAGNESIUM CHLORIDE....available in fluid form but VERY reactive to PHOSPHATE fertilizers
- CALCIUM CHLORIDE.... Available in fluid form but VERY reactive to PHOSPHATE fertilizers, more so than MgCl2.

Poor Soil Structure Prevents Water Movement

PHOTOSYNTHESIS

- $6H_2O + 6CO_2 = C_6H_{12}O_6 + 6O_2$
- Six molecules of water plus six molecules of carbon dioxide produce one molecule of sugar plus six molecules of oxygen

GLUCOSE

- 40 % CARBON (C)
 53 % OXYGEN (O)
- 7 % HYDROGEN (H)

How Much Carbon ?

200 Bushel per Acre

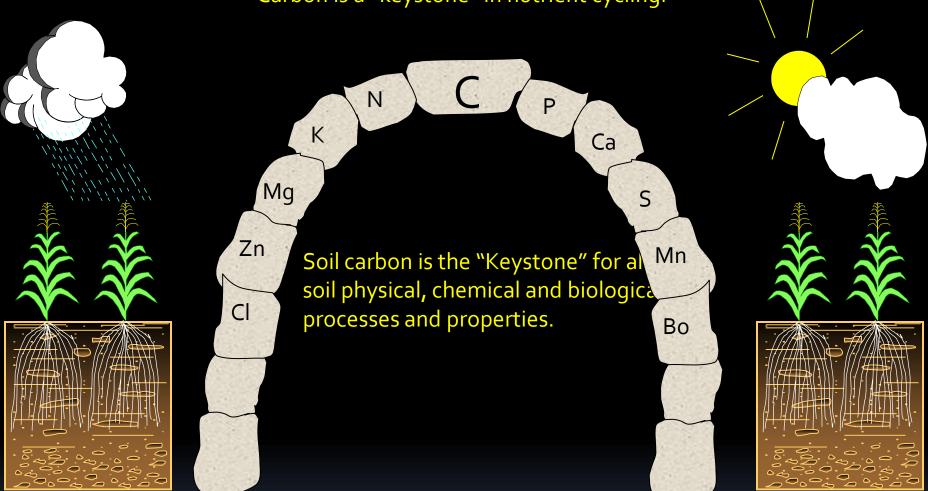
4000 lbs of Carbon in the Grain Another 4000 lbs in the Stalks 8000 lbs of Carbon per acre or 29,360 lbs of Carbon Dioxide/A

Corn Stalk Residue 200 bu Grain/A

How do I get rid of the residue?

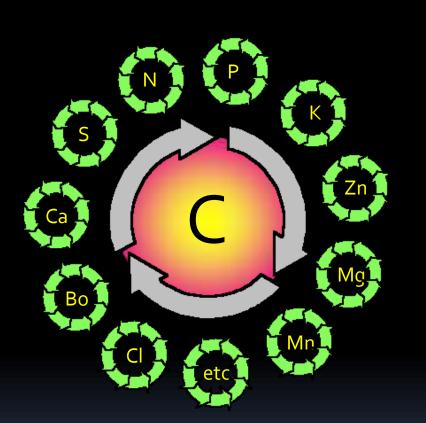
 Remember – The residue contains the plant nutrient "Carbon"

"IDEA" Get rid of the residue while the next crop is growing and capture CO2!



No. 1 Environmental Enemy in Production Agriculture

Intensive Tillage



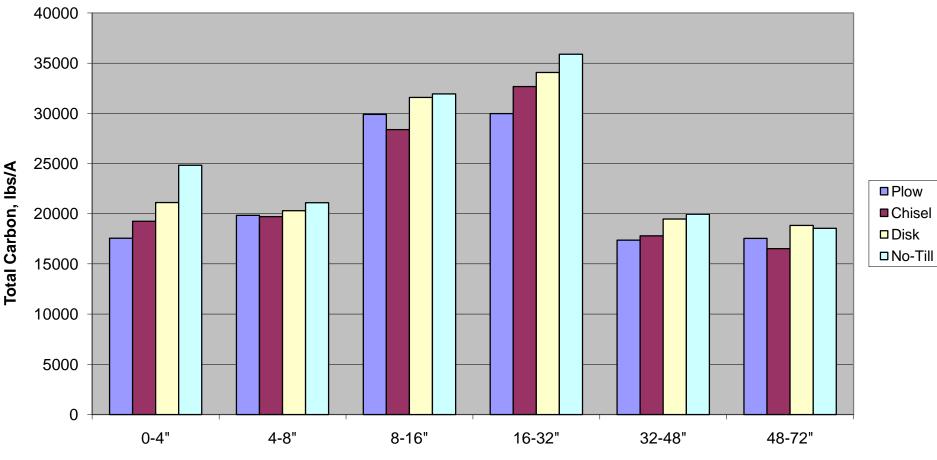
Carbon is a "keystone" in nutrient cycling!

Management platform

fertility, variety, irrigation, species, cover crop, manure, rotations, tillage, soil type, erosion, timing,

Net carbon sequestration requires other nutrients.

7 – 10 units of C per unit of N
50 –60 units of C per unit of P
70 – 80 units of C per unit of S


Balanced fertilization is needed for both crop uptake and carbon sequestration!

Rattan Lal, 27 Jan., 2000

ROGERS MEMORIAL FARM

PAUL JASA, UN-L

Total Carbon, Pounds per Acre

Cropping System

Boron in Plants

- **Boron** is involved in the production of new cells in meristematic tissue.
- Boron is highly toxic to germinating seeds of corn and soybeans. Boron fertilizers should never be applied as a "starter fertilizer" in or near the row at planting time.

Boron Deficiency

- Since it is not mobile in the plant, deficiency symptoms are cessation of growth at the terminal bud, followed by yellowing and death of young leaves.
- Severely impaired fruit and seed set are late season symptoms on many crops.
- Boron deficiency is commonly confused with potato leaf hopper damage in alfalfa

Boron Deficient Alfalfa

Boron Deficiency in Corn

Correcting Boron Deficiency

- Boron is highly toxic to germinating seeds of corn and soybeans. Boron fertilizers should never be applied as a "starter fertilizer" in or near the row at planting time..
- Application of boron:
 - Broadcast applications of 1-2 pounds of B as granular borate.
 - Foliar application of 0.1-0.5 pounds soluble borate.

Boron Soil Test and Recommendations

		Boron Rate
Boron Soil Test, ppm	Rating	Lbs B/A
0 – 0.25	Low	0.5 – 3.0
0.26 – 0.50	Medium	0.0 - 1.7
0.51 +	High	0

Alfalfa, clover, peanuts, cotton and sugar beets require more boron than other crops.

Molybdenum

Correcting Molybdenum Deficiency

• Liming

- Seed treatment with 1-2 ounces of ammonium molybdate.
- Foliar applications of ammonium molybdate of 2-4ounces per acre.

 Due to the toxic nature of molybdenum to ruminant animals, molybdenum fertilization needs to be managed very carefully.

Where Does Molybdenum Deficiency Occur?

- On low pH, weathered soils in SE and SC Kansas.
- Molybdenum deficiencies are showing up more in no-till cropping systems across the Great Plains.
- Recent reports suggest low molybdenum in seed may be contributing to Mo deficiencies.

Molybdenum Deficiency Symptoms

 Molybdenum deficient plants appear stunted, light green and N deficient.

Manganese Soil Test (DTPA) and Recommendations

		Mn Rate
<u>Mn Soil Test, ppm</u>	Rating	Lbs Mn/A
0-0.5	Very Low	12
0.6-1.5	Low	7-12
1.6 – 3.0	Medium	3-6
3.1 - 6.0	High	0-2
6.0 +	Very High	0

Copper Soil Test (DTPA) and Recommendations

		Cu Rate**
Cu Soil Test, ppm	Rating	Lbs/A
0-0.10	Very Low	3-6
0.11-0.20	Low	1-2
0.21-0.30	Medium	0
0.31-0.60	High*	0
0.61+	Very High	0
 * Some specialty crops r 	need copper up to (0.60 ppm
 ** Corrective application 	rate	

Sampling Plant Tissue

Corn

Top leaf with a collar for early sampling
Ear leaf at tassel/pollination stage

Soybeans

- Most recently matured trifoliates

Wheat

- Whole sample at full tiller up to early heading

Alfalfa

- Top 1/3 of the plant at bud stage

Ag Testing - Consulting

Account No. : 90010		Plant Anal	ysis Report
WARD, RAYMOND C WARD LABORATORIES PO BOX 788 KEARNEY	NE 68848-0788	Invoice No. : Date Received : Date Reported :	1062219 07/16/2009 07/17/2009
		Lab Number :	2653

Results For : EAST CENTRAL CROP RESIDUE ALLIANCE Location : CORN Sample ID : B CLARK

Plant Type : Com

Stage : Tassel

	Result		Sufficiency Levels		
	Dry Basis	Deficient	Low	Sufficient	High
Nitrogen ,% N	2.68			. !	ļ
Phosphorus, % P	0.29				
Potassium, % K	2.32			÷ 1	1
Calcium, % Ca	0.586			- 1	- I
Magnesium, % Mg	0.242				Į.
Sulfur, % S	0.21				ļ
Zinc, ppm Zn	26				
Iron, ppm Fe	139			÷ 1	
Manganese, ppm Mn	53			- !	ļ
Copper, ppm Cu	9.6			- 1	
Brad: N is just slightly low. Adde	d N is not necessary unless yield poten	tial is very goo	d. Then yo	ou could	

apply 20 lbs of N. Ray Ward

Reviewed By : Raymond Ward	1/11/2010	Copy 1	Page 1 of 1
Bus: 308-234-2418	web site		we., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		raska 68848-0788

Ag Testing - Consulting

Account No. : 90013

Plant Analysis Report

WARD, RAYMOND & FARM ACCOUNT 2545 E 92ND ST KEARNEY	JOLENE	68847	Invoice No. : Date Received : Date Reported :	1050524 05/11/2009 05/12/2009
			Lab Number :	1206

Results For : FARM ACCOUNT Location : WHEAT Sample ID : HOME

Plant Type : Wheat Stage : FEEKES8

	Result		Sufficiency Levels		
	Dry Basis	Deficient	Low	Sufficient	Hig
Nitrogen ,% N	4.11				
Phosphorus, % P	0.33			• 1	
Potassium, % K	4.86		1	; ;	
Calcium, % Ca	0.443			- 1	
Magnesium, % Mg	0.167			• 1	
Sulfur, % S	0.37			÷ – – – – – – – – – – – – – – – – – – –	
Zinc, ppm Zn	33			- 1	
ron, ppm Fe	195			<u> </u>	
Manganese, ppm Mn	98				
Copper, ppm Cu	6.4			÷ 1	
Boron, ppm B	7			- 1	
Chioride, % Cl	0.11			• 1	
Molybdenum, ppm Mo	0.95			+ 1	

Reviewed By : Raymond Ward	1/6/2010	Copy 1	Page 1 of 1
Bus: 308-234-2418	web site		e., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		ska 68848-0788

Ag Testing - Consulting

Account No. : 90013		Plant Anal	lysis Report
WARD, RAYMOND & FARM ACCOUNT	JOLENE	Invoice No. :	1046303
2545 E 92ND ST KEARNEY	NE 68847	Date Received : Date Reported :	03/05/2008 03/06/2008
		Lab Number :	1044
Results For : GOODSON RAN	NCH LP		
Location : NORTH B GOO	D		
Sample ID : WINTER WHEA	T		

Plant Type : Wheat

Stage : FEEKES4

	Result		Sufficien	Sufficiency Levels	
	Dry Basis	Deficient	Low	Sufficient	High
Nitrogen ,% N	4.59		-		
Phosphorus, % P	0.41		1		
Potassium, % K	3.02		10		
Calcium, % Ca	0.44)	1		
Magnesium, % Mg	0.13		denne.	1	
Sulfur, % S	0.35		-	+	
Zinc, ppm Zn	32)			
ron, ppm Fe	615	-	4	1 1	
Manganese, ppm Mn	101				
Copper, ppm Cu	6.0		40		
Boron, ppm B	14			+ +	
Chloride, % Cl	0.73		10	and the second se	
Molybdenum, ppm Mo	1.38		1		
	and made and the Rolling will be the Pro-				

This sample is low in Magnesium. I am not sure if foliar will help. Epsom salts is magnesium sulfate. Apply 2 to 4 lbs of espsom salts per acre as a trial.